如何研制出一種在可見光下就可催化降解一般有機污染物的催化劑,其降解 效率與目前二氧化鈦光催化劑基本相
作者:訪客發布時間:2021-07-12分類:催化劑及助劑瀏覽:83
目前已有在納米二氧化鈦的合成時,添加少量元素,可以使波長向400納米之上轉移,作用波段可以達到500納米的波長
光催化劑的起源
光催化劑的起源:光催化技術是在20世紀70年代誕生的基礎納米技術,在中國大陸我們會用光觸媒這個通俗詞來稱呼光催化劑。典型的天然光催化劑就是我們常見的葉綠素,在植物的光合作用中促進空氣中的二氧化碳和水合成為氧氣和碳水化合物。總的來說納米光觸媒技術是一種納米仿生技術,用于環境凈化,自清潔材料,先進新能源,癌癥醫療,高效率抗菌等多個前沿領域。
補充:
世界上能作為光觸媒的材料眾多,包括二氧化鈦(TiO2),氧化鋅(ZnO),氧化錫(SnO2),二氧化鋯(ZrO2),硫化鎘(CdS)等多種氧化物硫化物半導體,其中二氧化鈦(Titanium Dioxide)因其氧化能力強,化學性質穩定無毒,成為世界上最當紅的納米光觸媒材料。
合成光催化劑為什么要加表面活性劑
應該是改性問題吧~~~
納米二氧化鈦的改性方法很多, 近年來,人們主要從以下兩個方面入手,提高 TiO2光催化劑的光譜
響應范圍和光催化效率。
其一是通過摻雜等手段降低 TiO2的禁帶寬度,增加其吸收波長。主要采用的方法有: 1)摻雜過渡金屬: 金屬離子摻雜可在半導體表面引入缺陷位置或改變結晶度,成為電子或空穴的陷阱而延長壽命;2)表面光敏化:將光活性化合物化學吸附或物理吸附于催化劑表面從而擴大激發波長范圍, 增加光催化反應的效率; 3)表面螯合及衍生作用: 含硫化合物、OH-和乙二胺四乙酸 (EDTA )等螯合劑能影響一些半導體的能帶位置,使導帶移向更負的位置。
其二是加入電子俘獲劑,使光生電子和空穴有效分離,降低 e-和 h+的復合速率, 主要采用的方法有: 1)貴金屬沉積: TiO2 表面沉積適量的貴金屬, 有利于光生電子和空穴的有效分離以及降低還原反應(質子的還原、溶解氧的還原)的超電壓, 大大提高了催化劑的活性, 研究最多的為 Pt的沉積, 其次Ag 、Pd和 Nb等金屬的摻雜也能降低 TiO2 的帶隙能; 2)復合半導體: 不同金屬離子的配位及電負性不同而產生過剩電荷, TiO2與半導體復合后增加半導體吸收質子或電子的能力, 從而提高催化劑的活性。在二元復合半導體中, 兩種半導體之間的能級差能使電荷有效分離; 3)電子捕獲劑: 加入O2、H2O2和過硫酸鹽等電子捕獲劑, 可以捕獲光生電子,降低 e-與 h+的復合幾率, 從而提高光催化效率。
- 上一篇:鈔票改變后印度旅游現狀
- 下一篇:光催化劑的起源
- 催化劑及助劑排行
- 最近發表