酯交換反應的催化劑
作者:訪客發布時間:2021-07-08分類:催化劑及助劑瀏覽:317
在堿性催化劑催化的酯交換反應中,真正起活性作用的是甲氧陰離子,如下圖所示。甲氧陰離子攻擊甘油三酯的羰基碳原子,形成一個四面體結構的中間體,然后這個中間體分解成一個脂肪酸甲酯和一個甘油二酯陰離子,這個陰離子與甲醇反應生成一個甲氧陰離子和一個甘油二酯分子,后者會進一步轉化成甘油單酯,然后轉化成甘油。所生成的甲氧陰離子又循環進行下一個的催化反應。
堿性催化劑是目前酯交換反應使用最廣泛的催化劑。使用堿性催化劑的優點是反應條件溫和、反應速度快。有學者估計,使用堿催化劑的酯交換反應速度是使用同當量酸催化劑的4000倍。堿催化的酯交換反應甲醇用量遠比酸催化的低,因此工業反應器可以大大縮小。另外,堿性催化劑的腐蝕性比酸性催化劑弱很多,在工業上可以用價廉的碳鋼反應器。除了上述優點外,使用堿性催化劑還有以下缺點:堿性催化劑對游離脂肪酸比較敏感,因此油脂原料的酸值要求比較高。對于高酸值的原料,比如一些廢棄油脂,需要經過脫酸或預酯化后才能進行堿催化的酯交換反應。 已經工業化的堿性催化劑主要有兩類:易溶于甲醇的KOH、NaOH、NaOCH3等催化的液相反應,以及固體堿催化的多相反應。 絕大多數的生物柴油工業生產裝置都采用液相催化劑,用量為油重的0.5~2.0%。甲醇鈉與氫氧化鈉(或鉀)用作酯交換催化劑時還有所不同。當使用甲醇鈉為催化劑時,原料必須經嚴格精制,少量的游離水或脂肪酸都影響甲醇鈉的催化活性,國外工藝中要求兩者的含量都不超過0.1%;但其產物中皂的含量很少,有利于甘油的沉降分離及提高生物柴油收率。而氫氧化鈉(或鉀)為催化劑對原料的要求相對不嚴格,原料中可含少量的水和游離脂肪酸,但這會導致生成較多的脂肪皂,影響甘油的沉降分離速度,同時會導致甘油相中溶解較多的甲酯,從而降低生物柴油的收率。一般說來,以氫氧化鈉(或鉀)為催化劑,油脂原料的酸值不要超過2 mg KOH/g,催化劑的用量為油脂重量的0.5~2.0%。即使油脂原料的酸值較高,超過2 mg KOH/g,理論上還可以使用氫氧化鈉(或鉀)催化劑,但需要加入過量的催化劑以中和游離脂肪酸。這種條件下皂的生成量高,甘油沉降分離困難,且甘油相中溶解的甲酯量較高,因此不宜采取。對于氫氧化鈉和氫氧化鉀,當用作酯交換催化劑時也有所不同。
1)在對粗產物進行沉降分離過程中,催化劑主要存在于甘油相中。由于KOH的分子量大于NaOH,因此會提高甘油相的密度,加速甘油相的沉降分離。
2)使用KOH為催化劑皂的生成量要比使用NaOH時少,這會減少甲酯在甘油相中的溶解。國外一項研究表明,以KOH為催化劑催化葵花籽油酯交換,分離后的甘油相中,甲酯的摩爾含量為3%,而以NaOH為催化劑時的摩爾含量為6%。
3)以KOH為催化劑,產物用磷酸中和可生成磷酸二氫鉀,這是一種優質肥料,不僅可以減少廢物的排放,同時還會增加經濟效益。與其相比,鈉鹽只能作為廢物處理。NaOH為催化劑的優點是其價格便宜。
除此之外,國內外還在開發有機堿催化劑,比如胺類等。當以有機胺為催化劑時,在常壓低溫下經過6~10h的反應,可以達到比較高的轉化率,但產物中甘油單酯和二酯的含量很高,而甘油的量很低,難以工業應用;當提高反應壓力和溫度時,反應過程中又有可能生成酰胺,降低產品質量。因此,以有機堿為酯交換催化劑還需要有做大量的研究工作來證明其可行性。
固體堿催化劑最近幾年正在工業化。與液堿催化劑相比,使用固體催化劑可以大大提高甘油相的純度,降低甘油精制的成本,“三廢”排放少,產物不含皂,提高生物柴油收率;但反應速度慢,需要較高的溫度和壓力,較高的醇油比,且對游離脂肪酸和水比較敏感,原料需嚴格精制。法國石油研究院開發的Esterfip-H工藝是第一個將固體堿為催化劑成功應用于工業生成的生物柴油生成工藝,其催化劑是具有尖晶石結構的雙金屬氧化物,已經建成16萬噸/年的生成裝置。另外,德國波鴻的魯爾大學也開發了一種固體堿催化劑,這種固體堿催化劑是一種氨基酸的金屬絡合物,催化酯交換反應的溫度為125℃,高于液堿催化劑的反應溫度(60℃左右)。將建設1噸/小時的工業示范裝置。日本正在開發強堿性陰離子樹脂催化劑,已取得很大進展。不過陰離子樹脂只能在低溫(60℃以下)操作,否則很快失活,而低溫下酯交換活性又比較低,所以限制了其工業應用。由于樹脂容易再生,因此若將來能開發出耐高溫的強堿性樹脂,則具有一定的工業化前景。除此之外,國內外正在開發的固體堿催化劑還包括粘土、分子篩、復合氧化物、碳酸鹽以及負載型堿(土)金屬氧化物等。 酸催化酯交換的反應機理如下圖所示。質子先與甘油三酯的羰基結合,形成碳陽離子中間體。親質子的甲醇與碳陽離子結合并形成四面體結構的中間體,然后這個中間體分解成甲酯和甘油二酯,并產生質子催化下一輪反應。甘油二酯及甘油單酯也按這個過程反應。
與堿催化相比,酸性催化劑可以加工高酸值原料,因為在酸性催化劑存在下,游離脂肪酸會與甲醇發生酯化反應生成甲酯。因此酸性催化劑非常適合加工高酸值的油脂。另外,對于長鏈或含有支鏈的脂肪醇與油脂的酯交換,一般也用酸性催化劑。但是,酸催化酯交換的反應速度非常慢,且需要比較高的反應溫度和醇油比。在酸催化反應中,如反應溫度較高,可能副反應,生成副產物如二甲醚、甘油醚等。另外,在酸催化中,水對催化劑活性的影響非常大。據報道,硫酸催化大豆油與甲醇酯交換的反應中,若大豆油中加入0.5%的水,則酯交換轉化率由95%降到90%。如果加入5%的水,則轉化率僅為5.6%。在酯交換過程中生成的碳陽離子容易與水反應生成碳酸,從而降低生物柴油收率。當油脂中游離脂肪酸含量高時應注意這一問題,因為酸性催化劑會催化游離脂肪酸與甲醇酯化,從而產生一定量的水,影響反應進程,一步酯交換反應難以達到滿意的轉化率。以高酸值的油脂如廢棄油脂為原料時,為了避免產生的水的影響,工業上常常采用邊反應邊脫水的方法,或采用間歇操作,把水分出去后再補充甲醇繼續反應。
在工業應用中,最常用的酸性催化劑是濃硫酸和磺酸或其混合物。兩者相比,硫酸價格便宜,吸水性強,這有利于脫除酯化反應生成的水,缺點是腐蝕性強,且較容易與碳碳雙鍵反應,導致產物的顏色較深。磺酸催化劑的催化活性比硫酸弱,但在生成過程中產生的問題少,且不攻擊碳碳雙鍵。
強酸型陽離子交換樹脂和磷酸鹽是兩種典型的酯交換酸性固體酸催化劑,但它們都需要比較高的反應溫度和較長的反應時間,且酯交換的轉化率比較低,使用說明短,因此限制了工業應用。其它固體酸催化劑如硫酸鋯、硫酸錫、氧化鋯及鎢酸鋯等也有人在研究。
另外,據2005年11月的Nature報道,日本東京工業大學正在開發從天然有機物如糖、淀粉、纖維素等生產固體酸催化劑。其制備方法是先把有機物如葡萄糖、蔗糖在低溫(>300℃)下進行不完全碳化,然后進行磺化反應,引進磺酸基,得到磺化的非定形碳催化劑。此種催化劑具有價格便宜、酯化活性高、使用壽命長的特點,但還沒發現用于酯交換反應方面的報道。
在國外的生物柴油生成裝置中,很少用酸催化的酯交換工藝。酸性催化劑主要被用來對酸值較高的油脂進行預酯化,然后再進行堿催化的酯交換。我國現有的生物柴油廠主要以高酸值的廢棄油脂為原料,規模小,使用的催化劑大多是液體酸,也有少數開發使用固體酸。使用固體酸催化劑對高酸值的植物油進行預酯化,然后再用堿催化酯交換制備生物柴油,是一條較好的工藝路線。
- 上一篇:帶壓堵漏密封膠粘劑的分類?
- 下一篇:膠粘帶產品的種類有哪些?
- 催化劑及助劑排行
- 最近發表